
Georgia State University Law Review
Volume 24
Issue 4 Summer 2008 Article 7

March 2012

Homogeneity of Degree in Complex Social
Networks as a Collective Good
Gregory Todd Jones

Follow this and additional works at: https://readingroom.law.gsu.edu/gsulr

Part of the Law Commons

This Article is brought to you for free and open access by the Publications at Reading Room. It has been accepted for inclusion in Georgia State
University Law Review by an authorized editor of Reading Room. For more information, please contact mbutler@gsu.edu.

Recommended Citation
Gregory T. Jones, Homogeneity of Degree in Complex Social Networks as a Collective Good, 24 Ga. St. U. L. Rev. (2012).
Available at: https://readingroom.law.gsu.edu/gsulr/vol24/iss4/7

https://readingroom.law.gsu.edu/gsulr?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://readingroom.law.gsu.edu/gsulr/vol24?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://readingroom.law.gsu.edu/gsulr/vol24/iss4?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://readingroom.law.gsu.edu/gsulr/vol24/iss4/7?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://readingroom.law.gsu.edu/gsulr?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/578?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://readingroom.law.gsu.edu/gsulr/vol24/iss4/7?utm_source=readingroom.law.gsu.edu%2Fgsulr%2Fvol24%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mbutler@gsu.edu


HOMOGENEITY OF DEGREE IN COMPLEX
SOCIAL NETWORKS AS A COLLECTIVE GOOD

Gregory Todd Jones,* Douglas H. Yarn** Reidar
Hagtvedt, & Travis Lloyd

INTRODUCTION

Cooperation has played a prominent role in the evolution of many
species, from the simplest single-celled organisms' to fish,2 from
birds3 to canines 4 and felines, 5 and from non-human primates 6 to
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Bernard J. Crespi, The Evolution of Social Behavior in Microorganisms, 16 TRENDS ECOLOGY &
EVOLUTION 178 (2001); Gregory J. Velicer et al., Developmental Cheating in the Social Bacterium
Myxococcus Xanthus, 404 NATURE 598 (2000); Gregory J. Velicer, Evolution of Cooperation: Does
Selfishness Restraint Lie Within? 15 CURRENT BIOLOGY 173 (2005); Gregory J. Velicer, Social Strife in
the Microbial World, 1I TRENDS MICROBIOLOGY 330 (2003); Gregory J. Velicer & Kristina L.
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2. See generally LEE ALAN DUGATKIN, COOPERATION AMONG ANIMALS: AN EVOLUTIONARY

PERSPECTIVE (1997); Sarah F. Brosnan et al., Observational Learning and Predator Inspection in
Guppies (Poecilia Reticulata), 109 ETHOLOGY 823 (2003); Lee Alan Dugatkin, Dynamics of the Tit For
Tat Strategy During Predator Inspection in the Guppy (Poecilia Reticulata), 29 BEHAV. ECOLOGY &
SOCIOBIOLOGY 127 (1991); Lee Alan Dugatkin, Tendency to Inspect Predators Predicts Mortality Risk
in the Guppy, Poecilia Reticulata. 3 BEHAV. ECOLOGY 124 (1992); Manfred Milinski, Tit for Tat in
Sticklebacks and the Evolution of Cooperation, 325 NATURE 433 (1987).

3. See generally CHARLES R. BROWN & MARY BOMBERGER BROWN, COLONIALITY IN THE CLIFF
SWALLOW: THE EFFECT OF GROUP SIZE ON SOCIAL BEHAVIOR (1996); John Faaborg et al.,
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humans, 7 where cooperation may have had the most evolutionary
significance. And yet, the evolution of cooperation among self-
regarding individuals remains a formidable challenge currently
addressed by highly multi-disciplinary efforts that include scientists
from anthropology, biology, computer science, ecology, economics,
physics, political science, psychology, mathematics, sociology and
numerous other fields. 9 The puzzles posed by cooperative behavior
take many forms, but at their root, all involve social dilemmas -
circumstances in which individual interests are at odds with common
interests. More precisely, individuals are faced with a choice between
selfish behavior and prosocial, cooperative behavior where the latter
imposes more cost or offers less benefit than the former. While all
individuals are strictly better off being selfish, regardless of what
other individuals choose to do, all individuals would be best off if
enough individuals behaved cooperatively. Thus, the dilemma.10 The
study of these types of problems has largely been driven by the

Confirmation of Cooperative Polyandry in the Galapagos Hawk (Buteo Galapagoensis), 36 BEHAV.

ECOLOGY & SOCIOBIOLOGY. 83 (1995).

4. See generally SCOTT CREEL & NANCY MARUSHA CREEL, THE AFRICAN WILD DOG: BEHAVIOR,

ECOLOGY, AND CONSERVATION (2002); J. C. Fentress, Jenny Ryon, Peter J. McLeod, & G. Zvika

Havkin, A Multidimensional Approach to Agonistic Behavior in Wolves, in MAN AND WOLF:

ADVANCES, ISSUES AND PROBLEMS IN CAPTIVE WOLF RESEARCH 253 (Harry Frank ed., 1986) ; Franck

Courchampa & David W. Macdonald, Crucial Importance of Pack Size in the African Wild Dog Lycaon
Pictus, 4 ANIMAL CONSERVATION 169 (2001).

5. See generally TIMOTHY M. CARO, CHEETAHS OF THE SERENGETI PLAINS: GROUP LIVING IN AN

ASOCIAL SPECIES (1994); Craig Packer & Anne E. Pusey, Cooperation and Competition Within

Coalitions of Male Lions: Kin Selection or Game Theory? 296 NATURE 740 (1982).
6. See generally FRANS B. M. DE WAAL, CHIMPANZEE POLITICS (1982); FRANS B. M. DE WAAL,

GOOD NATURED: THE ORIGINS OF RIGHT AND WRONG IN HUMANS AND OTHER ANIMALS (1996);

ALEXANDER HARCOURT & FRANS B. M. DE WAAL, COALITIONS AND ALLIANCES IN HUMANS AND

OTHER ANIMALS (1992); Sarah F. Brosnan & Frans B. M. de Waal, A Proximate Perspective on
Reciprocal Altruism, 13 HUM. NATURE 129 (2003).

7. See generally Ernst Fehr & Urs Fischbacher, The Nature of Human Altruism, 425 NATURE 785
(2003); Dominic Johnson et al., The Puzzle of Human Cooperation, 421 NATURE 911 (2003); Elinor

Ostrom et al., Revisiting the Commons: Local Lessons, Global Challenges, 284 SCIENCE 278 (1999).
8. PETER HAMMERSTEIN, GENETIC AND CULTURAL EVOLUTION OF COOPERATION (2003).

9. Id.
10. See generally Robyn M. Dawes & David M. Messick, Social Dilemmas, 35 INT'L J. PSYCHIATRY

111 (2000); N. M. Gotts et al., Agent-Based Simulation in the Study of Social Dilemmas, 19 ARTIFICIAL

INTELLIGENCE REV. 3 (2003).
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application of evolutionary game theory" and due to their importance
as generalized models of many important socio-economic
situations, 12 iconic games such as the Prisoner's Dilemma have been
widely employed as metaphors for the dilemma.' 3

At the same time, the study of networks, complex systems, and
nonlinear dynamics has pervaded all of science, 14 offering insight
into such diverse concerns as the architecture of the Internet,' 5 the
topology of food webs, 16 and the metabolic network of the bacterium
Escherichia coli.17 Indeed, E.O. Wilson, who once characterized the
evolution of cooperation as one of the greatest challenges for modem
biology,18 more recently made a more emphatic appeal for research
on complex systems.' 9

The greatest challenge today, not just in cell biology and
ecology, but in all of science, is the accurate and complete
description of complex systems. Scientists have broken down

11. For a historical development of evolutionary game theory, see generally HERBERT Gtrns, GAME
THEORY EVOLVING (2000); JOSEF HOFBAUER & KARL SIGMUND, EVOLUTIONARY GAMES AND

POPULATION DYNAMICS (1998); JOHN MAYNARD SMITH, EVOLUTION AND THE THEORY OF GAMES

(1982); JOHN VON NEUMANN & OSKAR MORGENSTERN, THEORY OF GAMES AND ECONOMIC BEHAVIOR

(1944); William D. Hamilton, Extraordinary Sex Ratios, 156 SCIENCE 477 (1967); John Maynard Smith
& George R. Price, The Logic of Animal Conflict, 246 NATURE 15 (1993); Robert L. Trivers, The
Evolution of Reciprocal Altruism, 46 Q. REV. BIOL. 34 (1971).

12. Marco Tomassini et al., Social Dilemmas and Cooperation in Complex Networks (Dec. 22,
2006) (unpublished manuscript, available at
http://arxiv.org/PS-cache/physics/pdf/0612/0612225v1 .pdf).

13. See generally ROBERT AXELROD, THE EVOLUTION OF COOPERATION (1984); MAYNARD SMITH,
THEORY OF GAMES, supra note 11; ROBERT SUGDEN, THE ECONOMICS OF RIGHTS, CO-OPERATION AND
WELFARE (1986); Robert Axelrod & William D. Hamilton, The Evolution of Cooperation, 211 SCIENCE
1390 (1981); Michael Doebeli & Christoph Hauert, Models of Cooperation Based on the Prisoner's
Dilemma and the Snowdrift Game, 8 ECOLOGY LETrERS 748 (2005); Martin A. Nowak & Robert M.
May, Evolutionary Games and Spatial Chaos, 359 NATURE 826 (1992); Martin A. Nowak & Karl
Sigmund, Evolutionary Dynamics of Biological Games, 303 SCIENCE 793 (2004); Martin A. Nowak &
Karl Sigmund, Tit for Tat in Heterogeneous Populations, 355 NATURE 250 (1992).

14. Steven H. Strogatz, Exploring Complex Networks, 410 NATURE 268 (2001).
15. Michalis Faloutsos et al., On Power-Law Relationships of the Internet Topology, 29 COMPUTER

COMM. REV. 251 (1999).
16. Richard J. Williams & Neo D. Martinez, Simple Rules Yield Complex Food Webs, 404 NATURE

180 (2000).
17. H. Jeong et al., The Large-Scale Organization of Metabolic Networks, 407 NATURE 651 (2000).
18. E. 0. WILSON, SOCIOBIOLOGY: THE NEW SYNTHESIS (Twenty-fifth Anniversary Edition, 2000).
19. E. 0. WILSON, CONSILIENCE 85 (1998).
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many kinds of systems. They think they know most of the
elements and forces. The next task is to reassemble them, at least
in mathematical models that capture the key properties of the
entire ensembles.2 °

The application of complex systems tools and network analysis
methodologies to the study of social dilemmas represents a very new,
but extremely promising means of shedding light on the quandary of
cooperation.

2 1

Early simulation studies of the evolution of cooperation were
based on the notion that all agents competed with all other agents,
including themselves, in a round robin style tournament that pitted
various interaction strategies against all others.22  Later studies
demonstrated that when evolutionary dynamics were at play, the
evolution of cooperation depended on what philosopher Bryan
Skyrms called "correlated association," 23 that is, that it was at least
slightly more likely that agents would interact with a subpopulation
of agents of their own kind, in strategic terms. This correlated
association can be accomplished in many ways, including
reputational mechanisms, signaling mechanisms, and spatiality.

20. Id.
21. Guillermo Abramson & Marcelo Kuperman, Social Games in a Social Network, 63 PHYSICAL

REV. LETrERS E 030901 (2001); Brian Skyrms & Robin Pemantle, A Dynamic Model of Social Network
Formation, 97 PRoc. NAT'L ACAD. Sci. USA 9340 (2000); Feng Fu et al., Evolutionary Prisoner's
Dilemma on Heterogeneous Newman-Watts Small-World Network, 56 EUR. PHYSICAL J. B 367 (2007);
Nobuyuki Hanaki et al., Cooperation in Evolving Social Networks, 53 MGMT. SCI. 1036 (2007); Erez
Lieberman et al., Evolutionary Dynamics on Graphs, 433 NATURE 312 (2005); Hisashi Ohtsuki
Onocomma, et al., A Simple Rule for the Evolution of Cooperation on Graphs and Social Networks, 441
NATURE 502 (2006); Francisco C. Santos & Jorge M. Pacheco, Scale-Free Networks Provide a Unifying
Framework for the Emergence of Cooperation, 95 PHYSICAL. REV. LETrERS 098104 (2005); Francisco
C. Santos et al., Cooperation Prevails When Individuals Adjust Their Social Ties, 2 PLOS
COMPUTATIONAL BIOLOGY 1284 (2006); Francisco C. Santos et al., Evolutionary Dynamics of Social
Dilemmas in Structured Heterogeneous Populations, 103 PROC. NAT'L ACAD. Sc. USA, 3490 (2006);
Francisco C. Santos et al., Graph Topology Plays a Determinant Role in the Evolution of Cooperation,
273 PROC. ROYAL Soc'Y B 51 (2005); Yorgy Szabo & Gabor Fath, Evolutionary Games on Graphs,
446 PHYSICS REP. 97 (2007); Tomassini, supra note 12 . For an excellent and quite thorough review of
the use of agent based simulations in the study of social dilemmas, see Gotts, supra note 10.

22. Known as a "mean field" simulation. Axelrod's early tournaments were archetypal. See
AXELROD, EVOLUTION OF COOPERATION, supra note 13.

23. BRYAN SKYRMS, EVOLUTION OF THE SOCIAL CONTRACT (1996); BRYAN SKYRMS, THE STAG
HUNT AND THE EVOLUTION OF SOCIAL STRUCTURE (2004).

[Vol. 24:4
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Following the common sense notion that geography might play a role
in the evolution of cooperation, many simulation studies have
employed spatiality, placing agents on a two-dimensional grid.24 (See
Figure One.) Side effects of this typology include an artificial
limitation on the number of neighbors, or social connections (known
as "degree" in network analysis parlance) and a concurrent limitation
on the possible differences in levels of connections between
individual agents (known as "heterogeneity of degree").

In this study, we join those that employ complex systems tools and
network analysis methodologies25 to leave the artificiality of the two-
dimensional toroidal architecture behind in favor of network
architectures offering a full range of degree and heterogeneity of
degree, facilitating a more generalized study of the evolution of
prosocial behavior. (See Figure Two.) In what follows, we begin by
formally specifying the models under study and providing a detailed
description of the simulations. We then explain our results, focusing
principally on the conclusion that heterogeneity of degree negatively
influences the evolution of cooperation and that this effect is
independent from other factors such as average degree.

24. Where this two-dimensional grid is "non-bordered," that is, the top wraps to the bottom and the
left side wraps to the right side, the typology is called a torus.

25. Seesupranote 21.
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Figure One: A torus - a two-dimensional, non-bordered space.
(full color diagram available at:

http://www.gregorytoddjones.com/publications.htm).

Finally, we briefly discuss the consequences of these results in the
broader context of institutional design efforts that may bring about
increased levels of cooperation and maximize social welfare. We
suggest that the promotion of homogeneity of degree may properly be
viewed as a collective good.
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fl

//

Figure Two: A complex network in which each agent has
N - 1 possible connections, a full range of degree and

heterogeneity of degree. (full color diagram available at:
http://www.gregorytoddjones.com/publications.htm).

MODELS AND SIMULATIONS

We examine a population of N players, each engaging in a repeated
prisoner's dilemma game with a neighborhood of other players
defined by particular network architectures.26 The set of players with
whom player i interacts in period t is denoted by n,,. In each
generation, which is comprised of g games, each player accumulates
an adaptive score based upon a standard payoff matrix described in
more detail below. At the end of each generation, each player

26. For an introduction to the significance of network architecture, see Xiao Fan Wang & Guanrong
Chen, Complex Networks: Small-World, Scale-Free and Beyond, IEEE CIcurlTS AND SYSTEMS

MAGAZINE 6 (2003). See Figure Three.

HeinOnline -- 24 Ga. St. U. L. Rev. 937 2007-2008

2008] COMPLEX SOCIAL NETWORKS 

Figure Two: A complex network in which each agent has 
N - 1 possible connections, a full range of degree and 

heterogeneity of degree. (full color diagram available at: 
http://www.gregorytoddjones.com/publications.htm). 

MODELS AND SIMULATIONS 

937 

We examine a population of N players, each engaging in a repeated 
prisoner's dilemma game with a neighborhood of other players 
defined by particular network architectures.26 The set of players with 
whom player i interacts in period t is denoted by OJ I. In each 
generation, which is comprised of g games, each player accumulates 
an adaptive score based upon a standard payoff matrix described in 
more detail below. At the end of each generation, each player 

26. For an introduction to the significance of network architecture, see Xiao Fan Wang & Guanrong 
Chen, Complex Networks: Small-World, Scale-Free and Beyond, IEEE CIRCUITS AND SYSTEMS 
MAGAZINE 6 (2003). See Figure Three. 

7

Jones: Homogeneity of Degree in Complex Social Networks as a Collective

Published by Reading Room, 2008



GEORGIA STATE UNIVERSITY LAW REVIEW

observes the payoffs and strategies of each neighbor and
stochastically updates 27 their strategy with probability p E [0,1] by
imitating the strategy of the neighbor with the highest adaptive score
(including themselves). Ties in high scores are broken at random.

(a) (b) (c) (d) (e)

Figure Three: Schematic illustration of various network
architectures, all with 25 nodes, roughly in ascending order of

heterogeneity. (a) Fully connected network. (b) Ring lattice with
all nodes connected to its neighbors out to some range k (here k =
3).(c) Small world network starting with ring lattice and adding

shortcut links between random pairs of nodes. (d) Random
network constructed with connection probability,p = .15. (e)

Scale-free network constructed by attaching nodes at random to
previously existing nodes, where the probability of attachment is

proportional to the degree of the target node, i.e.,
"the rich get richer." (full color diagram available at:
http://www.gregorytoddjones.com/publications.htm).

Strategic Dynamics

For each period t, players choose to either cooperate (C) or defect
(D) with each of its neighbors C2,, and the strategic decision for each
neighbor is independent of the decisions with regard to other

27. Note that where p < 1, updates are asynchronous. See Bernardo A. Huberman & Natalie S.
Glance, Evolutionary Games and Computer Simulations, 90 PROC. NAT'L ACAD. SCI. USA 7716 (1993).
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neighbors, that is, a player can choose to cooperate with some
neighbors and defect with others.28 Each neighbor j e C,, faces a
symmetrical decision giving rise to a standard payoff matrix.

i,j C D
C R,R S,T
D T, S P,P

Where ir(si,sj) is the payoff for player i choosing strategy si

when neighborj chooses strategy s1 ,

;z(C, C) = R, ir(C, D) = S, Yr(D, C) = T, and n'(D, D) = P.

In keeping with the standard structure of a social dilemma,
T > R > P > S, which makes defection a dominant strategy, that is,
defection results in a higher payoff as compared to cooperation,
regardless of what strategy the opponent neighbor chooses, and
2R > (T + S), which insures that mutual cooperation is preferred
over all other strategy sets in the sense that it produces maximum
aggregate outcomes. The unique equilibrium for the game, mutual
defection, thus leads to a Pareto-suboptimal solution.

For each generation, each player accumulates an adaptive score for
g games for all neighbors. Following the logic that the maintenance
of networks with more neighbors would involve more cost than
networks with fewer neighbors, we reduce adaptive scores by 0(k),
the total cost of interaction with a network of k neighbors. Thus, the
net payoff for each player i accumulated in a time period t is

l ,, = E -
Jrn~i,

where 0(k) is an increasing function of k with the specific form
0(k) = cka, where a > 1 and 0< c < P.2 9

28. But see Hanaki, supra note 21.
29. See Hanaki, supra note 21.
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Imitation Dynamic

After each generation, each player examines the accumulated
adaptive scores of each of its neighbors, Q ., and its own
accumulated adaptive score, and either adopts by imitation the
strategy of the most successful neighbor, or keeps it own strategy if it
has been most successful, to be employed in the next generation,
formally

Si=t+1 ' arg max I , (sj j), fili, (si)

If more than one player in the neighborhood shares the highest
accumulated adaptive score, ties are broken at random.

Network measures

For each run of the simulation, which is comprised of a large
number of generations sufficient to arrive at equilibrium in the
strategy population, a number of variables are recorded: population,
average degree, heterogeneity of degree, network architecture, and
cooperation. Network architecture is recorded as lattice, small world,
random, or scale-free (fully connected is a special case of lattice).
Cooperation is measured as a ratio of player decisions to cooperate to
the total number of cooperation/defection decisions. (See Table One.)

RESULTS

We ran the simulation as described above 1,000 times creating
stochastic networks by drawing network architecture uniformly from
lattice, small world, random, or scale-free; drawing population
uniformly from a range of 10 to 100; and drawing average degree
uniformly from a range of 2 to 10. Heterogeneity of degree ranged
from 0 to 4 as a function largely of network architecture. Each run
was for 1,000 generations with the cooperation ratio measured in the
last 100.
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Variable Variable Type Specification

Population:
the number of
players - constant Independent N
throughout a given
simulation run
Average Degree:
the average number
of social network Independent - .k
connections across
all players

Heterogeneity: = where

the standard _2 (k -) 2 d(k)
deviation of Independent k=1

average degree N -

across all players k = k d(k)
k=l

NetworkArchitecture Independent Indicator Variables

The ratio of acts of

Cooperation Dependent cooperation to
opportunities for
cooperation.

Table One: Model Variable Specification

First, we regressed cooperation on population, average degree,
heterogeneity of degree, and three indicator variables representing
four network architectures: lattice (as the base case), small world,
random, and scale free. (See Model One.) We included the indicator
variables to capture any variation resulting from network
architectural differences not captured by the other independent
variables.
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CoefficientsO

Unstandardized Standardized
Coefficients Coefficients Collinearit Statistics

Model B Std. Error Beta t Sl. Tolerance VIF
1 (Constant) 70.524 3.023 23.330 .000

SWDum -.915 2.075 -.017 -.441 .660 .675 1.481
RNDum -60.740 5.802 -1.203 -10.468 .000 .080 12.445
SFDum -65.202 5.493 -1.291 -11.871 .000 .090 11.152
Pop .245 .028 .312 8.604 .000 .805 1.241
Degree -8.170 .348 -1.320 -23.450 .000 .335 2.986
Hetero 31.847 3.272 1.164 9.733 .000 .074 13.485

a. Dependent Variable: Coop

Colllnearty Diagnostics-

Condition Variance Proporfions
Model Dimension Eleenvalue Index (Constant) SWDum RNDum SDum POP Degree Hetero
1 T 4.051 1.000 00 .01 .00 .00 ,01 .01 .00

2 1.274 1.783 .00 .22 .01 .00 .00 .00 .01
3 1.060 1955 .00 .00 .02 .04 .00 .00 .00
4 .324 3.58 .00 .63 .03 .01 .05 .09 .01
5 .164 4.965 .03 .05 .02 .01 34 .26 .03
S.112 6.007 .25 .05 .02 .01 .44 .00 .05

7 .014 17.087 .72 .05 .91 .94 .16 .63 .91
a. Dependent Variable: Coop

Model One: Cooperation ("Coop") regressed on Population
("Pop"), Average Degree ("Degree"), Heterogeneity of Degree

("Hetero") and three indicator variables representing four
network architectures, Lattice (base case), Small World

("SWDum"), Random ("RNDum"), and Scale Free ("SFDum").

We hypothesized that population size would have a positive effect
on cooperation, and that both average degree and heterogeneity of
degree would have a negative effect. While Model One bore out the
first two hypotheses (population coefficient = .245, p < .000 and
average degree coefficient = -8.170, p < .000), heterogeneity of
degree showed a significant positive effect (heterogeneity of degree
coefficient = 31.847, p < .000). However, collinearity diagnostics
indicated that the two most heterogeneous network architectures were
highly collinear with the heterogeneity of degree variable (variance
proportions on dimension 7: random network = .91, scale-free
network = .94, and heterogeneity of degree = .91). Further, the small-
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world network indicator variable failed to achieve statistical
significance (p = .660). These results offered confidence that the
indicator variables were not adding significantly additional
explanatory power. Indeed, the collinearity made model coefficients
uninterpretable.

Coefflclentsa

Unstandardized Standardized
Coefficients Coefficients Collinea Statistics

Model B Std. Error Beta t Si. Tolerance VIF
1 (Constant) 43.468 2.372 18.328 .000

Pop .335 .035 .428 9.473 .000 .919 1.089
Degree -4.780 .279 -.772 -17.146 .000 .925 1.081
Hetero -4.208 1.204 -.154 -3.495 .001 .969 1.032

a. Dependent Variable: Coop

Colllnearity Diagnostics a

Condition Variance Proportions
Model Dimension Eigenvalue Index (Constant) Pop Deree Hetero
1 1 3.247 1.000 .01 .02 .02 .03

2 .429 2.750 .01 .02 .09 .93

3 .220 3.843 .09 .21 .86 .03
4 .104 5.580 .88 .75 .02 .01

a. Dependent Variable: Coop

Model Two: Cooperation ("Coop") regressed on Population
("Pop"), Average Degree ("Degree"), and Heterogeneity of

Degree ("Hetero")

Subsequently, in Model Two, we removed the indicator variables
and regressed cooperation on population, average degree, and
heterogeneity of degree. (See Model Two.) In this more parsimonious
model, population had a significant positive effect (population
coefficient = .428, p < .000), average degree had a significant
negative effect (average degree coefficient = -4.78, p < .000), and
heterogeneity of degree had a significant negative effect
(heterogeneity of degree coefficient = -4.208, p < .001).
Additionally, collinearity diagnostics showed that each of the
independent variables was loading highly on its own dimension
(population variance proportion on dimension 4 = .75, average degree
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variance proportion on dimension 3 = .86, heterogeneity of degree
variance proportion on dimension 2 = .93). Based on this evidence,
we concluded that heterogeneity of degree has a significant negative
effect on the evolution of cooperation and that this effect is
independent of the negative effect of average degree.

DISCUSSION

In Bowling Alone,30 Robert Putnam worries that the decline of
social capital that he sees in the declining memberships in civic
organizations may undermine the civil engagement that, according to
him, is necessary for a strong democracy. The results of this study
suggest that the problem may be more nuanced. It may not be, in fact,
the mere magnitude of social connections but the nature of these
connections that should concern us most. As Putnam points out,
membership in local civic organizations has been replaced to some
extent by mass membership organizations, and our results
demonstrate that resulting increases in average degree may exert a
negative influence on cooperative behavior that promotes social
welfare. Putnam's work also suggests that local cohesiveness, or
"clumpiness" may have a determinative effect. This is a network
measure not included here, but planned for future studies.

Our most important finding in this study, however, is that
inequality in social connectedness, heterogeneity of degree, has a
negative effect on the evolution of prosocial behavior, and that this
effect is independent of the negative effect of average degree. Paired
with evidence that modem day social and technological networks are
increasing in heterogeneity, exhibiting multi-peaked degree
distributions 31  unlike the egalitarian, single-peak degree

30. Robert D. Putnam, Bowling Alone: America's Declining Social Capital, 6.1 J. DEMOCRACY 65
(1995). See also ROBERT D. PUTNAM, BOWLING ALONE: THE COLLAPSE AND REVIVAL OF AMERICAN
COMMUNITY (2000).

31. Francisco C. Santos & Jorge M. Pacheco, A New Route to the Evolution of Cooperation, 19 J.
EVOLUTIONARY BIOLOGY 726 (2006).
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extent by mass membership organizations, and our results 
demonstrate that resulting increases in average degree may exert a 
negative influence on cooperative behavior that promotes social 
welfare. Putnam's work also suggests that local cohesiveness, or 
"clumpiness" may have a determinative effect. This is a network 
measure not included here, but planned for future studies. 

Our most important finding in this study, however, is that 
inequality in social connectedness, heterogeneity of degree, has a 
negative effect on the evolution of prosocial behavior, and that this 
effect is independent of the negative effect of average degree. Paired 
with evidence that modem day social and technological networks are 
increasing in heterogeneity, exhibiting multi-peaked degree 
distributions31 unlike the egalitarian, single-peak degree 

30. Robert D. Putnam, Bowling Alone: America's Declining Social Capital, 6.1 1. DEMOCRACY 65 

(1995). See also ROBERT D. PUTNAM, BOWLING ALONE: THE COLLAPSE AND REVN AL OF AMERICAN 

COMMUNITY (2000). 

31. Francisco C. Santos & Jorge M. Pacheco, A New Route to the Evolution of Cooperation, 19 J. 
EVOLUTIONARY BIOLOGY 726 (2006). 
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distributions 32 characteristic of the Pleistocene's environment of
evolutionary adaptedness (EEA)33 when our current social brains
evolved, these findings should give us pause. Merely promoting the
development of dense social networks may lead us down a path to
social decline. More important may be the design of institutions that
promote homogeneity in social connectedness - increasing
homogeneity of degree produces network effects that increase overall
social welfare. As such, homogeneity of degree is properly thought of
as a collective good.

32. Satoshi Kanazawa, Where Do Social Structures Come From? 18 ADVANCES IN GROUP

PROCESSES 161 (2001).
33. JOHN BOWLBY, ATrACHMENT (1969).
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